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SUMMARY

Investigation of the turbulent-boundary-layer flow over a flat
plate in compressible flow is carried out on the basis of the scheme
established in NACA TN 2542. By averaging the Navier-Stokes equations,
differential equations for the mean flow are obtained. A temperature-
velocity relation follows without a specified form of the length scale.
To derive the velocity distribution in the boundary layer, a choice of
the length scale has to be made. The temperature-velocity relation
reduces to Reynolds' analogy and the velocity distribution goes back to
Von Kérmén's logarithmic law for the special case of incompressible
flow.

There are essentially three universal constants, arising out of the
correlations in the energy equation, to be determined by comparing with
suitable experiments of the temperature-velocity relation at any known
Mach number and hest transfer at wall. The behavior at other Mach
numbers and heat-transfer conditions may then be readily predicted.
Because of the lack of accurate experimental data, attempts to carry
out such determinations are not included In the present report.

INTRODUCTION

As part of an investigation of Von Kérmén's similarity theory and
its extension to compressible flows, the theory for incompressible flows
was examined critically in reference 1 by using modern concepts. It was
found that the original form of the theory is supported by modern con-
cepts. In reference 2, the theory was extended to the case of compres-
sible flows and it was found that the analysis could be carried through
with additional approximations but without any modification of the basic
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concepts. In the present paper the problem of compressible flow in a
turbulent boundary layer is considered on the basis of the scheme
estgblished in reference 2. It is shown how the influence of the Mach
number (e.g., on the velocity and temperature distribution) can be pre-
dicted from the theory after the constant coefficients in“the theory
are determined by one set of experimental meassurements.

This investigation was conducted at the Massachusetts Institute of
Technology under the sponsorship and with the financial assistance of
the National Advisory Committee for Aerongautics.

VELOCITY-TEMPERATURE RELATION

Attempts will now be made to deduce relationships among the mean
quantities and their distributions within the boundary layer. To do so
one returns back to the complete equations of motion (equations (26)
to (29) of reference 2) instead of working with the "localized" equa-
tions where the observer rides with the mean velocity. These equations
are averaged so that only mean quantities and the correlations of the
fluctuating quantities appear.

A strictly perallel flow will be considered, The Jjustification of
its application to the case of a boundary layer will be discussed later.
By using the continuity equation, it is easy to show that

(D%F)=é—a§'5ﬁ (1)

when the mean flow depends on y only. Here the bar denotes the average
of the quantity under it and F stands for any function. (See appendix A
for definitions of symbols.) Thus, equation (26) of reference 2 leads to

g0

%F:% > (2)
S S =0

oy o J
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There follows immediately, by integration,

—_ 7

puv = Constant = To

ov2 =5 - BT - (3)
pvw = Constant = Toz

vhere T, 1is the shearing stress at the plate in the x-direction,
Togzs the shearing stress at the plate in the z-direction, and ﬁi, the

pressure outside the boundary layer. One expands the averaged quan-
titdies in equations (3) and finds that triple correlations are involved
as well as the mean-flow variables and double correlations. In usual
cases the triple correlations are taken to be of higher order than the
double correlations. For example,

olulv! m 0(‘l(p' )2 N)
~ \l(p')zo(W),«BW (1)

A word of caution, however, may be in order here to warn against the
overconfidence in such estimstions. It is nothing more than a plausible
guess of the individual terms, and sometimes a combination of the indi-
vidual terms may very well invalidate the result. The discussion in
reference 2 of the dilatation e serves as a good example.

Nevertheless, it 1is perhaps admissible in the present case to drop
triple correletions involving p' on the basis of the estimations like
equation (4). If one concedes that the effect. of the triple correla-
tions is not negligible but relatively small, then the validity of the
theory, being an approximate one, might not be seriously impaired
becguse of the omission. By leaving out the triple correlations, equa-
tions (3) are expanded into the following: :
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p UV + up'v =T, (5)
B=F1+5 (v)2
— = 1\2
=Dy [1 + 7M12_°_$Z_)_ (6)
pp w2
p VW =Ty, (7)

where subscript 1 denotes the free-stream quantity. From the equation
of continuity, one has

0 —~

— pv =0

ay

hence

——

p!'v' = Constant = m (8)

where m is evidently the mass transfer through the wall. Likewise from
the equation of energy (equation (28) of reference 2)

cp o T - R T =i

which ylelds, by omitting the triple correlation p'v'T' and inte-
grating between O and Yy,

ep(F 7T +Tp'v’)-R(5-5S)=fyu—edy+q+Q* (9)
8

%

where D, 1is the pressure at the wall (cf. equation (6)), &%, the
effective thickness of the laminsr sublayer, g, the heat transfer at
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o*
the wall, and g¥* = EZ dy, the heat generated within the laminar

0
sublayer (cf. appendix B for discussion of g¥*).

One may now meke the following observations: In equation (8), the
turbulent mass transfer m +vanishes if there is no addition or sub-
traction of mass through the plate. For a nonporous flat plate, then,
equation (5) leads to

puv =T, (10)
One may note that equation (10) is also the basic equation in refer-
ences 3 and h, where the role of p'v' was not mentioned, In refer-

ence 5, the term p'v' 1s kept and given no physical interpretation.

With the previous assumption of smell turbulence level

(v')2/u2 << 1, when the free-stream Mach number is of order unity,
equation (6) reduces to

Px D (11)

R

as usually accepted for boundary-layer flows, and the term D - 5; drops

out in equation (9). It is seen, however, that equation (11) ceases to
be true if

2 x (-V-l)2

w2

Equation (7) is merely the statement of constancy of the transverse
shear in the z-direction. It does not influence the mean motion in the
Xy-plane. :

The next step is to introduce the similarity theory and represent
the fluctuations in terms of the scales. One obtains from equation (10)

o2 = To (12)
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by absorbing the correlation constant u'v' into v, the similarity

scale for velocity fluctuations. Similarly from equation (9), with T’
broken into Ty' and T,' according to reference 2,

— Y — o dy
%PGWH'+VT§)= @y PV, §—+q+q% (13) .
o

8*

vhere «; 1is a correlation constant for the dissipation and use has
been made of the relation

——

(%e—) = ueE + 0(9'/’6)]/3

% e/P «vo2lto

Introducing scales 6 and 6, for T;' and T,', respectively, and
absorbing the correlations into proportional constants, ap and ag

°P5<Y'T1' + vtT2t) = E§o<%210 %% + a3voé)

Using equation (12) and the definition of t, in equations (32) of
reference 2,

y o dy Y
alpvo E; a7 du
¥ &%

o7 o(T - u¥)

with u¥* representing the velocity at the edge of the laminar sublayer.
Hence equation (13) becomes

gg + a3v0é> = ayTo(w - u¥) + q + g¥

B.Vo(:‘on

b
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or

T - —_ *
ap %% + agvy = ap(u - u*) + EJ;—E— (14)
o

where again the relations (12) and equations (32) of reference 2 have
been used.

The quantity v, may be put in terms of T:

' v0=\[%;=ﬁ\ff_ (15)

with B = dR ;?. Also, since gq* = T,u* (see appendix B), one may
p

introduce an "effective" velocity

§=E-(l-—1-)ﬁ?’ (16)

Then the final form of the differential equation between T and u is
reduced from equation (14) into

T = —
an E + a.3B‘{C[T= a.lue + g (17)

Equation (17) is derived without a specific assumption on the length
scale 1,. The constant ay Trepresents the heating due to dissipation,

as a part of the external work Tbﬁ; ao represents both the mixing

phenomenon and the compressibility; and a3 reflects the combined effect
of the compressibility and the dissipation. On a closer look at expres-

sion (16), it is revealed that the factor ( - éz) arising from the
heating effect 18 originated from the idealized situation of an entirely
turbulent outer boundary layer with similarity and an inner laminar
viscous sublayer. In the sublayer all the energy supplied by the
external work must go into heat through dissipation, hence the constant
unity appears. In the turbulent layer, part of the energy is trans-
ferred or turned into turbulent energy, therefore only a portion ay

is dissipated. If a transition region between the two idealized regions
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had been assumed, there would be no discontinuity in the picture but
a term of the order (l - al)ﬁ¥ would still be present in the heating

because of dissipation.l

Equation (17) may be nondimensionalized by writing

0 = 7T |

=
n

e
L (18)

1 — —
cp To/§ Py “12

]

(o4

o=/ (T - ey

~

where subscript 1 again refers to the free-stream value and Eg is
the temperature at the wall. Then there follows

=" Ml2(Alﬁ + AQ\{E') + Q (19)

116 see this, one could assume a linear transition of the dissi-
pation parameter such that

E':TO%E, 0S¥ S cyd%, cl<i
J
u - ug — .
1 du
= l+(a,l-l)___ —|To = cl_6*§y§c25*, c2>l
uCZ-uC d-y

da
= ayTq a—y—, cob* Sy

where ci8* <y < c 0% 1s the transition region and Ucy and Uc, are

the respective velocities gt the ends of the transition. Then the term

- Vs, + Ug
corresponding to 1l- iL-u* is 1 - S __l;____ii.
CI,l d.l 2
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where
—~
a
A2 = 7R Cflz —é r (20)
as
To
Q=22 1)cy[c,
@2 \T1 J

Equation (19) is the fundamental equation of the present theory for the
variation of mean temperature with mean velocity. In the spirit of the
local similarity, since the turbulence pattern is obtained by letting
the observer ride with the mean local velocity, it seems quite clear
that the Mach number effect at most would be an indirect one. The
constants a5, ap, and a3, being essentially correlation constants,

ought to be nearly independent of the Mach number. The effect of Mach
number on the mean temperature-velocity relationship is largely In the
first term on the right-hand side of equation (19), where Mlz stands

before the parenthesis. One may also expect the constants A, and Q

to vary in some way with the Mach number through the frictional coef-

ficient cp and the heat-transfer coefficient Cq¢ However, the varia-

tions of c¢r and cq with Mach number are known to be rather slow.

For an approximate theory, it might be sufficient to regard A;, A,

and Q also as universal constants independent of the free-stream Mach
number. Likewlse, the constants A; and A, might further be taken

to be independent of the heat-tramnsfer situation at the wall.

There are consequently three parameters aj;, ap, and a3 to be

introduced in the problem besides the boundary conditions of the mean
flow at the wall and in the free stream. These parameters are related
to the turbulence mechanism and must be empirically determined by com-
paring with experimental data. Once determined from suitable experi-
ments at low speeds with known heat transfer at the wall, they enable
one to predict the behavior at any other Mach number or heat-transfer
condition, provided, of course, that the turbulence level is still
smell and that the Mach number is not excessive.

In the following, equation (19) will be integrated first for the
case of subsonic flow and then for the general case. For the subsonic
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case the solution can be expressed in an ascending series of M12, and

a few terms would be sufficient to compare with low-speed tests to
deduce the values of the universal constants. The integral for the
general case is useful mainly for the prediction of supersonic boundary
Jayer after the universal constants are determined.

Case of subsonic flow.- Assume the solution to be expanded in
ascending powers of Mlez

8 = 6(0) = M12e(l) + Ml”e(e) + .. .+ M?ne(n) + .. . (21)

hence,

- o023 ooy ooy
1 - 1 -
w2 o0y [o(2) - § ogoy o] +
- 1 -
Mf[% %(0) 1/2]]}(3) - 5 9(0)"0(1)0(2) *

%e(o)-ze(l)'bj ... (22)

Substituting into equation (19) and equating powers of Mlen, one obtains
a set of differential equations for the functions 9(0), 6(1), e ey
G(n). Thus, for

0. d9(0) _ B
Ml : —d:'fi_— = Q
Mlz' d—:.-éi)- = Alﬁ' + A29(O)1/2
r (23)
L ) 1 -1/2
My =~ 3 %%o0) /201
6. ®3) 1 -1/2 1, -1, -2
R R E(e) "% %0 %) 1
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and so forth. For boundary conditions one has for the incompressible
case with pno heat transfer 6 = 6(g) =1 when U = Up, where

~ ¥
uy = 1 - ( -é?-%;. This result holds for any Mach nuwber; therefore,
u

9(1)=9(2)=- . . =0 vwhen ﬁ=ﬁl

With these conditions the integrals of equation (23) are found to be
ﬂ

80y = 1 + Qi - %)

9(1) - %

|
|
=3
e
=2
\v}
1
£
n
S’
+
S
R
=
(@]
W
~
N
1
S ”

.l.
|

o(z) = 22 ;‘;2(9 72 ) _?il(_l_:i)(e(o)ye ). e

and so forth. When the wall is insulated, Q = O, and the functions
9(1), @(2)s . . - are simply polynominals of i, For convenient

reference, a few of them are listed as follows:

60y = 1
6(1) = {2 - 12) ¥ agftt - W) 1
o0z = _E( w3+ 2R - ) - (_ R A2>('ii ﬁlil
N - S
[t 208 e - 0| (- - |
E} +22 Lo, - aAee)] (7 - %2) +
{

Ay Ao 8,2
E%+.E.-%G%-+Aﬂb-+Ag§]Gi-ﬁﬂj

and so forth.
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An interesting result to be noted is that the solution 9(0) in

equation (24) evidently coincides with what is usually known as Reynolds'
analogy, where a similar transfer mechanism is assumed for both the
momentum and the heat transfers. Here the same results are obtalned
because of the fact that the turbulent exchenge, proportional to the
temperature gradient d."f/dy, dominates the situation at very small Mach
numbers. A similar transfer mechanism follows the assumed similar tur-
bulence pattern., The solutions 9(1), and so forth now give the cor-

rection to Reynolds' analogy at higher. Mach numbers.

General case.- A brief outline will now be given for the general
case. Rewrite equation (19):

A2\ A M°
@(dié_ 2M1)=11ﬁ+g (26)
dua 2 2 2

which is now homogeneous in ‘{_6_ and U. Using the standard method, put

o [A1M2
fé=F(u>(11 u+9) (27)
2 2
Then F 1s to be solved from
_ F dF _ du (28)
Ay 2 A2 M2
Ll g2 1 ., XLl g+8
2 2 2 2
Integrating equation (28), one gets
A1M12 q )Bl 8o
-——2 U+ 2 = C(F - kl (F - kg) (29)
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vhere | / T

5y = -k; /(kl - xp) , (30)
82 = Ky (%1 - ka)

C = Integration constant

Together, equations (27) and (29) form a parametric representation of
the function 6 = 6(%). Applying the condition at the outer edge,
namely, € =1 when % = U, one has

(@) - (e,

r (31)
2

o - (5« ) - ] -

The complicated way in which the constants are entangled renders their
evaluation from empirical data highly tedious., Besides, the proper form
of equation (29), where every term is real, depends on the sign and
magnitude of the constants and is best to be directly integrated from
equation (28) once the constants are known.

-~

VELOCITY AND TEMPERATURE DISTRTBUTIONS IN

BOUNDARY LAYER

To determine the distribution of the mean velocity and/or the mean
temperature across the boundary-layer thickness, it 1s necessary to bring
in the definition of the length scale 1, as a function of y. 1In
reference 2, two alternative expressions (equations (33) and (39)) have
been given for the length scale, laying emphssis on the momentum and the
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energy equations, respectively. Integrating either will lead to a
velocity distribution, from which a temperature distribution may be
calculated by means of the results in the section "Velocity-Temperature
Relation." The distributions evaluated from the two expressions will,
in general, be different. It seems that only by comparison with
experiments can one say whether both lead to essentially the same
result or one form is preferable to the other in certain particular

cases.

The two definitions are, nevertheless, of the same general form:

2
o si_X__/si__X. (32)

dy dy2

with X standing for the variasble U in equation (33) of reference 2
and for T in equation (39) of reference 2. Without specifying X,
it follows from equation (32) of reference 2 that

.Vocc 2’0%

_ o 0F axja®
= al ay d-y/dyz (33)

where a1 is a proportional constant. Rewriting,

ax\ _ _ aw
d(loge -d—y'> = al ;7‘;

Hence, by integration and substitution of equation (15),

log g = 8 92
€ dy 1 Vo
-1« (34)

®J\VE
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The temperature~-velocity relation may then be used, yielding

1
&K (¥
ay
vhere > (35)
a —
G(W) = exp -Bl -d%
\T
Finally, one may obtain the distribution by integrating equation (35)
.
a(u)
_ ['ax a6 au

= d_e&ﬁa'&_)_ (36)

For definition (33) of reference 2, X =1

2

y=f~d?ji- (37)
é(u)

for definition (39) of reference 2, X =6,

_ | a8 du

A e o(®) (38)

Again one may first solve the subsonic case for a more explicit expres-
sion, which must be reducible to the ususl logarithmic distribution for

incompressible flow. Then a brief discussion of the general case for any
Mach number will be taken up.

Case of subsonic flow.- The function G(U) must first be evaluated
before integrating equation (36). By definition (35),

-8

exp (&g \|=— =+ a5 (39)

G(1)




16 | ~ NACA TN 2543

after nondimensionalizing with equation (8). Using equation (22),
one has

~o .‘T
ai ~ ~ ~
L,;l ‘{—lg = g,(%) + M12q>l(u) + Mlhq)g(u) + ...
where
u
) .
1 b 3/2
(W) = - -f %0) 7 01)
2 > (ko)
%
() = J: (% oPe(0)”/? - 1 02100 2) &
vy
b 3 5/2 1 3/2
P5(H) =J; (E 1)8(2)%0) ~ "2 °%3)¥0) T -
1
5 9. 30, -1/2) g
16 (1) “(0) J

and so forth, with the e(n)'s defined by equation (2l) with heat

transfer at wall and by equation (25) with an insulated wall. Sub-
stituting into equation (39), one may therefore put
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g(a) = go(u) (1 + Mlegl('{i) + Mlhgz('ﬁ) + .. :I
where
&%) = exp (al\g ) + 82)
~ 2 ~
g, (1) = al\lg ¢, ()
&) = &, if oo + Z—lﬁ cpf‘(azl
—
~ 2 ~ 2 ~ ~ ay
g3(u) = al c_f- @3(11) + alq‘a—; cPl(u)cPe(u) + E
Inverting,
1 1 2 4
= g (W) + Mg (W) +
gy go("”l)[ M,%8 Mg 5
where

g_(1) = -g (W)

g_,(W) = 871 - g,(¥)

17
- (M)
r o (k2)
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and so forth. Equation (42) may now be used to evaluate equations (37)

and (38):

(1) case (a) X = T:

ﬁ ~

du

V- V= —
Er G(u)

= ¥, o(¥) + M2y, 1 (§) + Mty o(R) + .

where Yy, 1is a reference station, Gr is the value of U

at y,., and

.a’ ~o
¥ _ du
u,0 ~
4 -L"i‘r go(u)
¥ _ v gl(ﬁ') a3
u,l N (@) u
& &
Y g 2(T) - gp(H)
Ta,2 = <

" (43)

-~

It will be of 1nterest to apply equat:f.on (43) to the incompressible

case, namely M12 — 0, The distribution is then

Yy - yr = Yu’o(u)



NACA TN 2543 19

For simplicity, one may take Yy, =8, & being the thickness of the
boundary layer,2 80 that )

Up = U3 .

e
1
Ko
I

With G(d) given by equation (2k),

~
u

9 = N =§U1+Q(ﬁ-'ﬁ1)-1:l

) % QI + Q(ﬁ - U

Therefore

o
I
o
I

X .
28y 2

T

] 112 '_—
e - ==\l + -
al Cf Qx

Cp 28y [3 1\}E¥ ce
- —_y = {1 -1 I D | .
e R L i R L L

2Actually this procedure does not give the best fit to experimental
velocity distributions, since the similarity concept is not valid near
the outer edge of the boundary layer. Instead of &, the length scale
should be taken as proportional to v/ﬁTa where uy 1s the frictional
velocity. For general discussions, however, there ought to be little
difference.
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where

X‘—‘-ﬁ'—'ﬁl::l}-_—l

i}
The constant a, may be determined from the usual condition at the
wall:3
du
— —> o a8 y — 0
. Ay

The other constant a; has to be evaluated by matching with experi-

mental distribution. From the definition (33), it corresponds to
Von Kérmdn's universal constant. |

One mey further develop the solution (44) into a power series in
Q for cases where the heat transfer is relatively small. After some
manipulation, the final result is

2
- 2+ B
loge ( - yBa 8) = —le + Q( k, 1 X) -
X 2+ By 2|2
. (hel"' 8 X)Q + o o o
where 1 (h5)
2
By =81\
B, = e‘aa(l * E-1%)/131
J

388 a possible refinement, the lamliner subleyer may be assumed to

have a linear velocity profile, and, instead of infinity, the velocity
gradient at the wall may be prescribed as

T T
%E = (—9) as y —-0
Y K ¥=0

However, this step complicates the practical calculation and must be
Justified by experience.
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Applying the condition of infinite velocity gradient at the wall, one
finds easily

B, = -3 (26)

For the case of an insulated wall, there follows

_1=_§‘—logez- (47)

which is precisely a form of the logarithmic law, matching with the
experimental distribution at the assumed edge of the boundary layer.
Such a form has been suggested by Dryden (reference 6) in 1935, where
the frictional velocity wu, &and Von Kérmén's constant K were used

instead of a; and cp in equation (¥7). By recalling the definition
one verifies readily that

. _IF

u. = \|—
T 2
(48)
a1=K
Equation (47) then reduces exactly to Dryden's form
_ — Uy y )
T - = - g log, I (49)

One may also conclude that the logarithmic law, suiltably modified,
indeed can be approximstely true even with the presence of a very small
amount of hest transfer, since equation (45) shows that the first-order
correction for Q = 0 merely amounts to replacing the factor in equa-
tion (49) by a slightly different one., If the heat transfer is appreci-
able, equation (45) predicts that the logarithmic law in the form of
equation (49) would break down. There would be considerable interest
if equation (45) could be tested for different values of Q.

It is apparent that each of the fractions ¥, n in equation (43)

may be developed into a power series in Q as above In general,
therefore, the right-hand side of equation (46), which gives the velocity
distribution, is in the form of a double series in the parameters @

and Mie, involving constants a] and ap which are to be determined
once and for all, In fact, by comparing with the incompressible
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insulated case as above, both ay

By

at subsonic Mach numbers are explicitly given as follows:

&nd BQ.

NACA TN 2543

end a, are given in terms of

For its practical importance, the results for the insulated case

are integrated by using equations (25),

cpo(ﬁ) =u -

bo + blﬁl + b?.ﬁe + b3'ﬁ3

@, ()

~ - ~ ~2
mz(u) Cy + cqu + o

and. so forth, where

bo=_

¢o

€1

c2

€3

cy

5

]

n

~ Ao o 2

oy

e
ﬂ?
+

My
R

Rl =

5 ~ 1
- 20 l ul5 -f— A1A2u - -2T+ A22ul3 - (R-Alﬂe +

+ C3u + Cll.u + C5

Equations (40)

~D

L

s, 2

1,2
"%AIAEul iAaul'—‘Alﬂe g 42
1 ~wp 1 ~ 1,2
- = - = A = A
1€ ATy ) 1Ap0) + 15 2
1
5 Mfe
3 A2

160 &

8

+I52-A1-“251 + 5 AP (% A2+11;A22)u1

1 Affj

~

uy

Y

(51)
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and so forth. The functions g, of equations (41) become

g(%) = exp [B(% - %) + ap) |
g, (%) = By (V) - (52)
ep(%) = Bl[qae(ﬁ) " %qu;f(ﬁﬂ

and so forth., Hence,

132{1 - exp EBl(ﬁ - ﬁl):l}

]

u,0

[
—
|

u,

~s ~ 2 ~)
(dlo + dyjly + dyjoup” 4 d13u13)}

L (53)
Y. 5 = By d-exp |-B(¥ - %) - + dogd + dpolie +
w,2 = Bp {-exp |-By( 1) - = (dzo 214 + dpp
~ Nll. ~o ~
d23u3 + d21,_u + d,25u5 + d.26ﬁ6) + (d.zo + d21ul +
app2 + dpgfy3 + apyyt + apsi’ + 526'516)}
and so forth, where
“
le = bO + b1, 2P égi
1 B2 B3
20 , Sb3
d = bl + — +
H Bl B2 , (54)
_ 3b3
d.12 = b2 + B——l—
dl3 = b3




2k

and

N

=4 (m+ n)! bm

do)n =
’ n. Blm"'l

i

The constants by are defined as follows:

By, 2

by = -co + 5= bg

hl = —cl + Blbob1

= Bify.2

h2 b —-C2 + —2—(bl + Ebobz)

h3 = '-C3 + Bl(blbe + bob3)

h)y = ~c), + E—]~'-(b é + 2bqb
L Y+ 3 1°3

h5 = —C5 + Blb2b3

_B1. 2
hg = 5° b3
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(55)

, (56)

</

With these evaluations, the distribution for the insulated subsonic case

becomes f£inally,

1oge % = -Bl(% - l) + Mlafl(:ﬁ) + Mlll-fE('ﬁ) + . e W

where

0 =-Y a(® - w2)

£,(8)

™
T~
B
ol
r\/1
B
=
E_
=
&

1

q (57)
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and so forth where By, 1is now determined again by the condition of

infinite velocity gradient at wall,

o

3 2 3 n L 6 n

=— =-1+M dq.. 4 - M dehﬁ + .. .

B 1 E In*1 1 E 1
n=0 n=0

The other alternative for X will now be comsidered:
(2) case (b) X =6:

Instead of equation (43), the equation becomes

U ~
gg du
du (%)

U

Since, from equation (43),

I
=
=3

& Tun

one may rewrite equation (59) as

- [ad 2 o ~o ]
Y- Y= Ye’o(u) + My Ye’l(u) + Mthe’g(u) ...

{
where

~

a .
E::‘ dae ay.
’ ~ au aw

U +m=n 3

(58)

(59)

(60)

In parallel with case (a), where X = U, the results for incompressible
flow with heat transfer and for an insulated wall in subsonic flow are
glven in the following. For the former problem, by using equation (23)

one obteins lmmediastely

Yo,0 = ¥y,0

(61)
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50 that a modification of the definition of Bo 1leads to the same
distribution (45). Thus the two choices of X are equivalent to each
other even for the distribution in incompressible flow.

For the compressible case with an insulated wall, the right-hand
side of equation (60) starts with Yg,1. Now

u de(l) d'Yu,O

Y = dau
8,1  |. & &
up
a
ay.
~ da
vy

by teking y,. =8 eand using equations (23) and (25). Integrating,

6,1 = B2 As + §E-+ 1u)e - (Ao + ﬁI + Ajug

Substituting into expression (59), one has

y - & = w2y, o + ofmy¥)

The condition of infinite velocity gradient at y = 0 again
determines B,

5 = -Bemle(éz + %% . Aiﬁ#) + O(Mlh)

Hence the distribution may be written as

I _
log_ |1+ Al(ﬁi ) + O(Mle) (62)
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Equation (62) indicates that in the absence of heat transfer at the
wall, the choice of X = 6 1leads to an additional term to the usual

logarithmic law even when M12 << 1 (but not zero). The additional
term is of more weight nearer the wall where ﬁ/ﬁi differs apprecisbly
from unity. Noticing further that A;[A, i1s a controlling parameter,

Al _ a,lla,3

Ay chE

by equation (20), one may say that the predicted deviation from the
usual logarithmic law depends on the relation between the heat gen-
erated by dissipation and the turbulent transfer of such heat (and
due to compressibility). Ordinary theories assume the dissipation to
be negligible, equivalent to putting A; = O. Then the additional

term vanishes,

The apparent contradiction of equations (L45) and (62) when only-
the lowest-order terms in both are retained is resolved by the obser-
vation that, in complete form, one should have

y - 6=QXu,O+M12Ye,l+ e o o (63)

so0 that the lowest-order terms should be taken according to whether
Q < M12 or the converse is true. If both are of the same order,

neither should be left out and the finsl expression certainly will
contain an additional term analogous to that in equation (62).
Physically, it is obvious that if a great amount of heat conduction

is present at the wall, it certainly would overshadow the distributed
heating due to dissipation (and compressibility) at lower Mach numbers.
On the other hand, when there is no external heating, the dissipation
becomes the only predominant factor.

The Mach number effect in equation (62) can be worked out without
difficulty, but, involving no new features, the details are omitted in
this report.

General case,- Thé general case will be only briefly treated, as
the integration depends on the values of the constants A;, A, and Q.
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(Cf. equations (28) to (30).) Still starting with equations (36)
and (39), one substitutes (@ by equation (27)

c(1d)

i
(/]
ke
t

'.-l
5@
A
=
=~
EAR
=N =14
=
o
S——”’
+
N}

i
U]
S
3
[
*= D
|
=
=
)\
e
%
}—J
Mo
+
N

where

2 1

i A1M12 k-

F(d) - &

By

L (64)

Hence, for X = 1,

~F - k,\"B1 -
sl
3 JFy -k
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with di/dF given by equations (28) and (29). Similerly, for X = 6,

y"yr':

~ - -B
1 ae du.(F kl) 1 aF (66)

By rﬁ?ﬂ? - Ik

with d6/dl to be evaluated from-equations (27) and (29). The con-
stant of integration B3 is determined from the condition:

a 7> 8 y—30

dy

The constant Bj has previously been identified with uTIK.

CORRELATION OF THEORY WITH EXPERIMENTS AND DISCUSSIONS

Determination of Arbitrary Constants

There are two sets of arbitrary constants. In the temperature-
velocity relation, one has three constants o7, on, and as representing

essentially combinations of the correlations, which are assumed uni-
versal with regard to the free-stream Mach number and the heat-conduction
conditions at wall. In addition there is the mean velocity u¥* at the
edge of the laminar sublayer separating the turbulent boundary layer
“from the wall. The second set arises out of the integration for the

mean velocity distribution within the boundary layer, consisting of

By and B, 1in the section "Velocity and Temperature Distributions in

Boundary Layer." The external conditions defining the mean flow are
the following: The free-stream velocity, pressure, temperature, the

friction at wall, and the temperature at wall (or the amount of heat
conduction from the wall).

With given external conditions, the constants can be determined
by comparing with accurate experimental results. The significant point
is that, once determined, a universal law for all Mach numbers and heat
conduction is established. No other ad hoc assumptions need to be
introduced for special cases.
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It is then only necessary to conduct a few low-speed experiments
with prescribed heat conduction at the wall and measure/thg mean tem-
perature and velocities at points across the section. Elias' data
(reference 7) were in this category but unfortunately were not pre-
sented in enough detail to suit the present purpose, One may naturally
also deduce from high-speed measurements with somewhat more work.
Wilson (reference 8) and Ladenburg and Bershader (reference 9) published
the results for a supersonic free stream., Unfortunately, again, their
data were not sufficient, because only one of the two variables U
and T was measured in either case. Both assumed the isoenergetic
relation to hold for evaluation of the other variable.

There are arguments for the validity of the isoenergetic relation,
either from the practical reason that the effective Prandtl number is
nearly unity or from some assumption on the mixing lengths for momentum
and energy, such as Ferrari's (reference 5). ZEven admitting the argu-
ments, no isoenergetic law would follow when the dissipation term is
kept in the energy equation., In reference 2, it has been shown that
the dissipation terms should be retained for a consistent theory, and
one could only regard the success, if any, to be essentially an
empirical one for the Mach number or heat conduction involved. Such
empirical results might be useful, however, for the approximate evalua-
tion of the constants a4, a,, and a3, at least as a guidance to the

orders of magnitude.

The constant u* is a more troublesome one, In appendix B, it
is shown to be dependent on the Mach number as well as another empirical
constant defining the extent of the turbulent layer. The correct determi-
nation, therefore, is very tedious and perhaps not warranted because
of the approximate nature of the theory. A possible way is to deter-
mine its value from incompressible flow and neglect the dependence on
Mach number. The error introduced can be assessed only by comparing
with experimental results. :

The determination of By and B, 1s done by matching with the

empirical distribution of the mean velocity or temperature. In the
section "Velocity and Temperature Distributions in Boundary Layer" it
is found that B, 1is essentially determined by the condition that

dG/dy —> ©» as y —>0, and B; corresponds to u.|K in the usual

incompressible case (cf. equation (47) and (48)), K being Von Kérmén's
universal constant. Approximastely, within the range of moderate Mach
numbers, B; might be taken to be independent of Mach number without

serious error.
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Some Experimental Results of Turbulent
Boundary Layer

A brief examination of the velocity distribution in the incompres-
sible case may be made to check with the logarithmic law predicted by
similarity theory. A quite common form for turbulent-boundary-layer flow
has been the l/7-power law. Recently, there are the careful measurements

in the National Bureau of Standards™ and some others such as those by
Hama (reference 10). Typical examples from these works at various
Reynolds numbers have been plotted on semilogarithmic paper as fig-

ure 1. It is found that outside the "viscous" layer near the wall,

all the curves tend to show a more or less straight portion, of approxi-
mately the same slope, the extent of the straight portion decreasing

as the Reynolds number decreases.5 Such a phenomenon is in accordance
with the expectation on the basis of the similarity theory, because a
smaller Reynolds number brings in the viscous effects to a greater degree,
causing a merging of the higher- and lower-frequency parts of the energy
spectrum. The slope was predicted to be proportional to u; and hence

should change only slowly with Reynolds number, again verified by the
experiments. For larger values of y/8, the velocity curve deviates from
the straight portion on the semilogerithmic plot and may be spproximated
by a power law. In this part of the boundary layer, the turbulence is
nearly isotropic and therefore the mean flow is not expected to follow
closely the logarithmic relation. The empirical 1/7-power law is also
included and shows good agreement on the whole.

For the compressible case, the works of Wilson (reference 3) and
Ladenburg and Bershader (reference 9) have been quoted before, The
velocity distributions given are also plotted in figure 1 for comparison.
It should be noted that in deducing the velocity distribution from their
megsurements, both made use of the isoenergetic relation., Wilson's
measurements were done with a pitot tube and registered actually the
Mach number variation within the boundary lsyer, computed from the
stagnation pressures. A discussion was made on the error introduced
by the assumed isoenergetic relation, with the conclusion that the
meximm error asmounts to about 3 percent for M; = 2,0. Now Ladenburg

and Bershader measured by means of an interferometer and, therefore,

hAs yet unpublished. The authors are obliged to Dr. Schubauer,
chief of the Aerodynamics Section in NBS, for furnishing the data.

JHema's results show more waviness than those of NBS, partially
because his Reynolds number is quite low, and are omitted in figure 1.




32 ‘ NACA TN 2543

have recorded actually the temperature variation. By coincidence the
two sets of experiments have some of the tests made under almost
identical. conditions, like the following:

’
Reference 9: T; = 143° C, M; = 2.3, Ry=x 107
Reference 8:5 T, = 150° ¢, M, = 2.03, Ry=x 107

After correcting for the Mach number difference, one may estimate the
temperature distribution in Wilson's case from Ladenburg and Bershader's
data and evaluate the velocity from the measured local Mach number. In
correcting for the Mach number difference, assume a modified isoenergetic
law to hold,

T -2
-_T:=1+aM121-_u_2

a being a constant, so that

Then, ietting subscripts refer to the respective experiments,

B[z : 2, - (19
(T) ~(T) . (m:) _l(Ml W 171, and B
T1/,  \TL ] (,2)

iy 1/1, and B 1/L, and B . 1/ and B

ke G

6Table I, station 6, of reference 8.
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The following results.are then obtained:

y/8 0.10k 0.217 0.321 0. 477 0.686
(1) 665 .51 820 .903 .982
(TI7)y 1.31 1.2h 1.20 1.12 1.05

(3 fa)w .62 .836 .899 .958 1.003
(8L . 769 838 _.888 .943 .990

where the subscripts WW refer to the value given by Wilson using the
isoenergetic law. It is interesting to see that, at least for this
particular case, the isoenergetic law does gilve a very close approxi-
mation as checked by the independent temperature meesurement. However,
whether the same agreement would result in other cases cannot be readily
ascertained.

.

Variation of Skin Friction with Reynolds
and Mach Kumbers

In the present theory the skin friction was introduced as an
external condition such as would influence the turbulence pattern
through its effects on the mean distributions. One may stretch the
theory a little to yleld an equation of the skin friction involving the
chordwise Reynolds number and the Mach number, as Prandtl and Von Kérmfn
had done for the incompressible case (references 11 and 12). A momentum
thickness 39 for the entire boundary layer may be derived, which is
related to the skin friction by

— -2 a¥
T=Dl‘112&

The viscosity is introduced to form a length scale with the frictional
velocity u,; and a chordwise Reynolds number sppears. When the univer-
sal constants in the present theory are known, the skin-friction relation
thus derived will also give explicit Mach number effects. A point to be
noted is that the velocity distribution should refer to the frictional
velocity u,, instead of ﬁI at the outer edge y = 6. For simplicity

it might be necessary to make approximations but there seems to be no
great difficulty.

Massachusetts Institute of Technof%gy
Cambridge, Mass., December 27, 1950.
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APPENDIX A
SYMBOLS

a8, constants, defined by equations (33) and (39),
respectively

bO’bl’ et coefficients in expansions for Py and. Po
C0sC1s + -+ - defined in equations (51)

CesCq coefficients of skin friction and heat transfer,

respectively, defined in equations (18)

CpsCy specific heats at constant pressure and constant
volume, respectively

coefficients in expansions for Y, j; and Yy 2,

d10s8775 + - -
defined by equations (54) and (55), respectively

420,815 ¢ - -

e = dilatation <§3 + i + Q)
ox Jdy Oz
R

fl,f2 correction functions for Mach number effect on
logarithmic law, defined by equations (57)

€0s83s + - - functions in expansion for G, defined by
equations (41)

8yr18 75 + - - functions in expansion for l/G, defined by
equations (42)

hy,hyy o o . constants defined by equations (56)'

k coefficlient of heat conductivity of fluid

SN constants defined by equations (30)

10 similarity scale of length

m . rete of mass transfer at wall
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2

X,¥,2

Yr

Aqy,8p

B1,Bo

35

mean pressure and mean pressure in free stream,
respectively

rate of heat trangfer at wall
rate of amount of heat generated in laminar sublayer

constants defined by equations (30)
time

similarity scale of time for fluctuations

velocity components in x-, y-, and z-directions,
resgpectively

similarity scale of velocity fluctuations

modified mesn velocity, defined by eguation (16)

magnitude of mean velocity at edge of laminar
sublayer .

nondimensionalized modified mean velocity (ﬁ = ﬁ;lul)

value of U evaluated at outer edge of turbulent
boundary layer -

value of U evaluated at a reference station within
"boundary layer

frictional velocity (MTO/ﬁi>

Cartesian coordinates; x, axis in direction of plate
and free stream; y, axis normal to plate; and 3z,
axis parallel to leading edge of plate

reference station in boundary layer

constants defined by equations (20)
constants defined by equations (45)

constant defined by equations (31)
function defined by equation (27)

function defined by equation (35)
Mach number of free stream
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Q constant defined by equations (20)

R° gas constant in equetion of state

Rs Reynolds number -based on ﬁoundary—layer thickness
T temperature

E; mean tempersture at wall

U mean velocity component in x-direction

X function defining similarity scale of length, as

in equation (32)

Y.0003,10 ¢ - o distribution functions for mean velocity, defined
? ? by equations (M43)

distribution functions for mean velocity, defined
by equations (60)

Ye,o,Ye,l’ e o o

constants representing correlations in averaged
equation of energy

B cwmmOFg)
D

G,l,CLE,GB

By constant defined by equations (64)

7 ratio of specific heats

o) thickness of boundary layer

o* thickness of laminar sublayer

€ . rate of dissipation |

8 nondimensionalized meen temperature, defined by

equations (18)

6 similarity scales of temperature fluctuation

129

e(O)’e(l)’ functions in expansion for 6, defined by
9(2), ... equations (24) or (25)
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T

To? Toz

@O’wl’ o .

37

momentum thickness of boundary léyer
coefficient of viscosity

coefficient of kinematic viscosity
density of fluid

shearing stress

shearing stress at the wall in direction of main
stream and parallel to leading edge, respectively

functions in expansion for F, defined by
equations (L40)

The subscript 1 denotes quantities in the free stream. Barred

quantities always represent mean values; primed quentities represent
fluctuations.
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APPENDIX B
DISSTPATION IN THE VISCOUS SUBLAYER .

Imagine the boundary layer to be idealized to consist of two parts:
The maJor part is entirely turbulent, extending from the outer edge to
a certain distance close to the wall. From there on the viscous effects
take over completely, and a viscous subleyer is formed. In the viscous
sublayer, the flow is laminar and free of turbulence.

Let the thickness of the viscous sublayer be ©&%*. The energy
equation within the sublayer then degenerates into

u(§)2 N (B1)

since all the correction terms vanish for the laminar flow with
i) ='ﬁ1y), ¥ = 0. The first term is the viscous dissipation; the
second is the heat conduction. Noting that p %& = T, = Constant, one

gets by integration between O and &%,

— . ar
TO'U-* -k 5‘3_— =0 = ql (B2)

assuming conduction to be comparatively negligible et y = 3%. Obvi-
ously Tou* 1s the heat generated in the viscous sublayer by dissipa-

tion, and -k % is the heat conducted into the fluid from the
y=0 '

wall. In the notation of equation (9), they are the quantities g*

and q, respectively. Therefore, 9 is the resultant heat exchange

between the viscous and the turbulent layers.

It is important to estimate, at least approximately, the magni-
tude u¥ for the present theory (cf. equation (16)). To do so the
first step is to estimate the thickness &%, Usually the thickness
of the sublayer is expressed by "
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o d*ur

— = h, a constant (B3)

In the actuel case there is a transition layer where the viscous and
turbulent shears are of the same order of magnitude. The value of h
in the incompressible case varles from approximastely 10 to 30,
depending on whether the sublayer 1s teken to be strictly laminar and
has, consequently, a linesr velocity profile, or the sublayer is to
consist of the entire thickness where noticeable departure from the
turbulent velocity profile occurs. In the idealization adopted in this
section, the transition layer is omitted and the boundary of the
"viscous layer" should therefore lie somewhere within the actusl tran-
sition layer. By such reasoning, it seems that an average value of h
of the order of 20 is probably adequate for the purpose.

It may be seen that, with such a concept, the value of h ought

to vary with the Msch number. For, one may regard the sublayer as owing

its existence to the fact that the wviscous shear becomes an appreciable
part of the total shear. Suppose, then, that h is defined to satisfy

d-y y:&*

o beling a constant less than unity. The quantity dﬁ/dy may be
estimated by using the turbulent veloclty distribution. For instance,
in the subsonic case if one uses equation (57),

T = % loge ¥ + B + M2 (%) + Ml’*fz(i‘i) + ..

§=%E+Ml2fl'(ﬁ)+. . :]

Hence, by substituting into equstion (BY4),

h = i(l M Pe (W) + L. )
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where U* = El- u* (cf. equation (16)). If Ig_ is the value for the
1
incompressible case, there follows

2, '~
——h =1+ Ml fl (u*) + . . (B5)
i - B

Since the right-hand s:’Lde involves u¥*, successive approximations might
be necessary for obteining the solution.

Having determined &%, one may find u¥ by agein applying the
turbulent distribution. )
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